

STRATEGIC MASTER PLAN FOR THE TCIAA

B.5. Technology Master Plan

October 2024

Disclaimer

QUALIFICATIONS, ASSUMPTIONS AND LIMITING CONDITIONS

This report is for the exclusive use of the ALG client named herein. This report is not intended for general circulation or publication, nor is it to be reproduced, quoted or distributed for any purpose without the prior written permission of ALG. There are no third-party beneficiaries with respect to this report, and ALG does not accept any liability to any third party.

Information furnished by others, upon which all or portions of this report are based, is believed to be reliable but has not been independently verified, unless otherwise expressly indicated. Public information and industry and statistical data are from sources we deem to be reliable; however, we make no representation as to the accuracy or completeness of such information.

The findings contained in this report may contain predictions based on current data and historical trends. Any such predictions are subject to inherent risks and uncertainties. ALG accepts no responsibility for actual results or future events. The opinions expressed in this report are valid only for the purpose stated herein and as of the date of this report. No obligation is assumed to revise this report to reflect changes, events or conditions, which occur subsequent to the date hereof.

All decisions in connection with the implementation or use of advice or recommendations contained in this report are the sole responsibility of the client. This report does not represent investment advice nor does it provide an opinion regarding the fairness of any transaction to any and all parties.

Objectives

- The objective of this report is to define a comprehensive technological development strategy for the entire TCIAA network, focusing on continuous improvement and innovation. To achieve this, the following actions have been outlined:
 - 1. <u>Scope and Pillars of the Technology Development System</u>: Defining the key areas for the technological advancement of the TCIAA network, supported by strategic pillars
 - 2. <u>Actions in the Technological Development Plan</u>: Developing several actions focusing on the digitalization of passenger experience, airport internal management, and collaborative tools for airport operations (A-CDM). These actions aim to enhance operational efficiency, improve the passenger experience, and implement collaborative platforms to ensure seamless and efficient airport management
 - 3. <u>Technology Development Action Plan</u>: Outlining a detailed action plan with specific performance indicators and timelines to monitor progress and ensure successful implementation

Content

Objectives & actions of the Technological Development Plan

ALG

Actions in the Technological Development Plan

Technology needs assessment and Systems building

Digitalization of passenger experience

Digitalization of airport internal management

Implementation of collaborative tools for airport operations (A-CDM)

TCIAA Technological Development Action Plan Digitalization of Key Performance Indicators

TCIAA airports have limited modern technology infrastructure and lack digitalization, relying on traditional and manual airport operations

Current technology infrastructure

Terminal building

- Overall passenger processes at the TCIAA airports are not automated, autonomous and lack digitalization. Thus, passengers always rely on staff to proceed through the airport
- Check-in, security, and boarding areas have limited technology, except at PLS, which features basic systems such as check-in and boarding information screens
- This level of digitalization suffices for the current level of operations. As traffic increases, GDT and XSC, and primarily PLS, will require a digital upgrade, which could be developed alongside the planned terminal expansions

Airport operations

- Since most of processes are still **manual with minimal automation**, the current technology used for airports operations encompasses traditional and basic systems
- This obstructs scalability of the airports, risking their efficient and safe operability
- Although the existing technology developments are sufficient for current and future operations for the rest of the TCIAA network,
 PLS must constantly update its systems, particularly those that will allow it to efficiently handle higher traffic levels

Given the expected increase in traffic and TCI's status as a luxury tourist destination, airport operations and passenger experience should evolve by embracing digital and technological innovation

The Technological Development Plan is based on the management of the organization and the risks and impacts linked to the airport network

Technological Development Plan concept

Technological	ACTIONS
	Technology Needs Assessment and Systems Building
	Digitalization of Passenger Experience
Plan	Digitalization of Airport Internal Management
(TDP)	Implementation of Collaborative Tools for Airport Operations (A-CDM)

OBJECTIVES

These 6 pillars constitute the foundation of the technological development plan, ensuring that airport operations are efficient, safe, secure, and user-friendly. By focusing on these key areas, the plan aims to enhance overall airport performance, streamline processes, and improve passenger satisfaction

Accessibility

Security

Non-duplicity

Operational Efficiency

Passenger satisfaction

The TDP enhances pax experience, optimizes internal management, and implements collaborative tools within the airport network

Technological Development Plan scope

_ /	Act	ions ————————————————————————————————————					
Тес	chno						
Objective	1. 2.	Identify technological requirements needed to implement new systems and tools within the TCIAA Network for successful deployment, including the digitalization of data gathering Conduct a gap analysis to assess the differences between current technology and what is required to meet strategic objectives, to later define the implementation plan (systems building)	This approach is				
Dig	aligned with the						
jective	1.	Improve overall passenger experience by integrating advanced technologies to reduce waiting times and streamline processes	standards and best practices for technological				
ldO	2.	Use digital travel credentials and mobile applications to ensure accurate passenger information, provide real-time updates, and enable luggage tracking	innovation and				
Dig	Digitalization of Airport Internal Management efficiency						
ctive	1.	Enhance operational efficiency through automation of routine tasks and use of advanced analytics for critical decision-making					
Obje	2.	Facilitate better communication among airport staff with integrated digital tools, ensuring compliance with regulatory standards and reducing process silos					
Im	olen	nentation of Collaborative Tools for Airport Operations (A-CDM)	n tharps the same				
ective	1.	Improve coordination among stakeholders using A-CDM tools to provide real-time situational awareness and increase predictability in airport operations	Technological Development Plan				
Obje	2.	Efficiently allocate resources based on real-time data, minimize operational delays, and foster transparency through collaborative decision-making	(TDP)				

The pillars of the TDP provide a comprehensive perspective aimed at optimizing airport operations through advanced technology

Technological Development Plan transversal objectives

Content

Objectives & actions of the Technological Development Plan Actions in the Technological Development Plan Technology needs assessment and Systems building Digitalization of passenger experience Digitalization of airport internal management Implementation of collaborative tools for airport operations (A-CDM) TCIAA Technological Development Action Plan Digitalization of Key Performance Indicators

ALG

1

2

3

The first step within the digitalization process should be adopting new systems aligned with the network's goals

Technology needs assessment and Systems building

Analysis of current technology

- Gather qualitative and quantitative data about current technologies and systems, including conducting surveys or interviews with relevant stakeholders to understand their expectations
- · Review existing documentation and performance metrics to evaluate the effectiveness and efficiency of current technologies
- · Identify strengths, weaknesses, and limitations of existing systems, evaluating how well current ones meet the network goals and user needs

Identification of future needs

- Analyze market trends, emerging technologies, and best practices relevant to the network, ensuring alignment with network's strategic goals and future requirements
- Assess the technical, financial, and operational feasibility of adopting new technologies, ensuring that any future technology complies with industry regulations, safety, and security standards
- · Gather input from stakeholders on desired features and functionalities for anticipated future systems

Gap analysis

- · Compare current technology within the TCIAA with the identified future needs
- Identify gaps between current technology capabilities and future requirements evaluating its functionality, performance, security and scalability

Implementation planning – Systems building

- Prioritize which technologies or system functionalities are most critical for the network
- Assess the **potential risks** involved in bridging the gap, including costs, integration complexity and disruptions, while stablishing mitigation strategies
- Evaluate the financial implications of adopting future technologies, considering upfront costs, maintenance, and the potential return on investment
- · Implementation plan Systems building for the TCIAA network, including the digitalization of data gathering

Content

Objectives & actions of the Technological Development Plan Actions in the Technological Development Plan Technology needs assessment and Systems building Digitalization of passenger experience Digitalization of airport internal management Implementation of collaborative tools for airport operations (A-CDM) TCIAA Technological Development Action Plan Digitalization of Key Performance Indicators

ALG

The technology deployment will entail rethinking airport layouts and integrating "On-the-Move" pax processing, with little stoppings points

International passenger terminal flow

This technological development will enhance the passenger experience, essential for airports serving luxury tourist destinations; additionally, greater efficiency will reduce or delay the need for extensive infrastructure

These are the latest tools introduced in international airports to disrupt traditional operating models and transform the customer experience

Tools for the Digitalization of Passenger Experience

All these tools embrace digital innovation to take a step forward to a enhance passenger experience, which follows that passengers spent time in airports by choice, not because of queues, check-in and controls

Tools for the Digitalization of Passenger Experience (1/6) Self-Bag Drop system

Description and objectives

- Self Bag Drop (SBD) is a self-service system that allows passengers to check their baggage directly. It involves scanning the boarding pass and passport, and checking-in luggage after attaching the baggage tag
- Since one machine can be configured for multiple airlines, these systems **enable more open space**, **reducing queuing** and ensuring a safe, secure, and hassle-free journey
- Besides, they require fewer airline staff, allowing personnel to be allocated at other 'concerning areas' across the airport
- With some processes taking ~60s, it helps increasing the time that passengers spend in duty-free shops and food and beverage outlets. Moreover, as more machines support more languages, airports can overcome communication barriers, providing a stress-free passenger experience

International best-practices

St. Maarten's Princess Juliana International Airport (SXM)

 With the completion of its new Departure Hall, SXM has included Self-Bag Drop systems in a shared setting, allowing multiple airlines to use it while still being able to customize functionality to each airline's unique requirements

Zurich Airport (ZHR)

• **ZRH integrated 20 self-service units** for baggage handling **in 2022**, which are available for SWISS, Edelweiss, Lufthansa and Austrian Airlines passengers, but other airlines are set to follow

Other examples

- At **Palma de Mallorca Airport (PMI)**, Air Europa is the only airline offering this service
- **Eurowings** provides it in 6 airports: 4 in Germany (BER, DUS, HAM and STR), in Stockholm (ARN) and Vienna (VIE)

SBDs at St. Maarten's Princess Juliana Int. Airport

Tools for the Digitalization of Passenger Experience (2/6) Digital Travel Credential

Description and objectives

- A Digital Travel Credential (DTC) is a virtual credential derived from a state-issued passport. It is an exact digital representation of the electronic machine-readable travel document and contains the same information (biographical, biometrics), providing the same level of security as a physical passport
- It is securely stored in the owner's smart device, ensuring data integrity as it is derived directly from the national ID app and can only be shared with the owner's consent
- This technology allows passengers to proceed check-in, immigration, and boarding without the need to show their passport. At each step of the journey, AI-enabled tools link their unique facial features to their passport for instant verification
- Thus, airport security processes are enhanced while the passenger journey is sped up

International best-practices

Aruba's Queen Beatrix Int. Airport (AUA)

• Aruba Happy Flow is an innovative process in which the passenger is only required to show the passport once, allowing to proceed through checkin, baggage drop-off, pass the border and boarding without showing it again

United States Airports

- US Customs and Border Protection has developed the Mobile Passport Control (MPC) app, which allows travelers to submit their photo, customs declaration and passport information to facilitate expedited re-entry
- Travelers with MPC gain access to dedicated lines reserved for them, ensuring seamless passage through immigration checkpoints

Other examples

- Using the enhanced Smart Gates in **Dubai Int. Airport**, pax registered go through passport control in a matter of seconds
- At **Tokyo Narita Int'l Airport**, **Face Express** enables seamless pax enrollment with biometricenabled kiosks and auto bag drops

Tools for the Digitalization of Passenger Experience (3/6) Virtual queues

Description and objectives

- Through mobile apps, passengers may reserve their positions in check-in, security, passenger control, and boarding queues being notified when it is their turn
- Other solution is to book a time slot in which the passenger will go through the corresponding process
- This **reduces the time** passengers spend **queuing**, allowing them to spent more time shopping, at restaurants, or exploring other terminal areas
- Additionally, it provides new opportunities for commercial retail and relaxation spaces in terminals

International best-practices

Better Virtual Queuing

BETTER VIRTUAL QUEUING

 Better Virtual Queuing is an app that allows booking times for check-in, security, and passport control. It is available at multiple airports, including Seattle-Tacoma International, Los Angeles International Airport, JFK T4, Berlin Brandenburg Airport, and Miami International Airport, among others

Los Angeles International Airport (LAX)

 Los Angeles International Airport (LAX) allows to reserve a time slot to go through the screening area via a new pilot program, LAX Fast Lane, rolled out for United Airlines customers

Other examples

• Delta has launched virtual queuing via the Fly Delta app, allowing passengers to relax away from the gate area and proceed to board when their specific seat, not just their flight, is boarding

Source: Seattle Airport, Los Angeles Airport, JFK Airport, Miami Airport, Berlin Airport, Delta, ALG Analysis

Tools for the Digitalization of Passenger Experience (4/6) Autonomous shopping

Description and objectives

- Shopping at duty-free stores in airports can be revolutionized to provide a more autonomous experience for passengers
- By simply tapping their credit or debit card at the entrance, passengers can choose the products, while the store tracks their movements and shopping patterns, automatically detecting the items they choose
- Without the need for checkout queues, sensors will detect the items purchased, charge the passenger's credit card accordingly, and print a receipt at the store's exit gate if required
- This reduces the time passengers spent waiting to be attended to at stores, while also providing a new shopping experience

International best-practices

Hong Kong International Airport

 "Travelwell" is the first autonomous shop at Hong Kong Int'l Airport. Its advanced IoT technology tracks the products selected and charges customers automatically. They can simply tap their credit cards at the entrance, select the items, and leave the shop without stopping for cashier checkout

Dublin Airport

 The "Dublin Town To Go" store, at Dublin Airport, features innovative AI technology from contactless checkout solutions. To enter the store, passengers simply scan their debit or credit card; a combination of camera technology and weight-sensor-enabled shelving detects what each shopper is buying and charges their card once they exit the shop

Source: Hong Kong Airport, Dublin Airport, ALG Analysis

Tools for the Digitalization of Passenger Experience (5/6) Airport App

Description and objectives

- Passengers can use **personal devices and integrated travel apps to manage every aspect of their journey** and consumer experience from reserving a table at a restaurant to manage virtual queues
- There are multiple options for customizing passenger experiences through apps, and airports are exploring new ways of doing business via e-commerce, with **platforms** offering on-demand experiences such as delivering food and drink in time for the flight, purchasing duty-free products online for delivery at the destination, as well as navigating through the airport
- Mobile apps could provide real-time directions, gate information, and updates on amenities, helping passengers navigate the airport with ease

International best-practices

Frankfurt Airport

- Frankfurt Airport has launched an app designed to help passengers making optimal use of their time in the terminal buildings
- This app provides information on getting to the airport, parking recommendations, shops and restaurants, other service facilities, and flight status updates
- The app guides passengers through the terminal to their gate, highlighting nearby shops they might interested, and notifying them of any changes to their flight

Source: Frankfurt Airport, ALG Analysis

Tools for the Digitalization of Passenger Experience (6/6) Remote check-in & E-luggage tags

Remote check-in

Description and objectives

- Airports can offer personalized luggage pickup and checking-in services outside the terminal
- This allows travelers to move through the airport without their baggage

International best-practices - Cape Verde

- Remote check-in is implemented at two of Cape Verde's largest int'l airports, Sal and Boa Vista
- Travelers can check-in and drop off their bags at hotels and head to the airport terminal luggage-free when ready
- Boarding passes and bag tags are issued by Cabo Verde Handling agents at the travelers' holiday resorts, giving them more time to relax. The bags are then transported to the airport by the ground handling firm

E-luggage tags

Description and objectives

- By 2030, paper baggage tags will be progressively replaced by electronic luggage tags, which can be updated with passenger's journey details and tracked via smartphone
- Replacing paper tags with reusable electronic tags will not only save passengers time spent checking-in at the airport but will also have environmental benefits

International best-practices - Lufthansa

- Lufthansa offers the option of using an "electronic bag tag" thanks to the **BAGTAG** and **BagID** apps
- Passengers prepare the digital tags at home using their smartphones and attach them to their luggage. At the airport, they can directly check-in at the self-service bag drop kiosks or at the Fast Bag Drop

Content

Objectives & actions of the Technological Development Plan Actions in the Technological Development Plan Technology needs assessment and Systems building

ALG

Digitalization of passenger experience

Digitalization of airport internal management

Implementation of collaborative tools for airport operations (A-CDM)

TCIAA Technological Development Action Plan Digitalization of Key Performance Indicators

To transform airport operations, it is essential to adapt and integrate new systems that support a collaborative and predictive environment

Digitalization of Airport Internal Management

- Digitalization is crucial for Airport Management as it enhances operational efficiency by automating daily tasks and eliminating information and process silos
- **Technological enablers** can be implemented to **support critical capabilities**, including the development, updating, and monitoring of the Airport Operating Plan, balancing demand and capacity, performance-based operations, and incident and emergency management
- These systems are thought to complement the existing airport systems in order to increase the operational efficiency and predictability and evolve towards the Total Airport Management

*The Airport Operations Plan (AOP) ensures a unified airport operation plan among local stakeholders, providing real-time knowledge of the current situation and detecting deviations to facilitate early decision-making and corrections. Unlike AOP, Airport Collaborative Decision Making (A-CDM) focuses on achieving common situational awareness among stakeholders to create a predeparture sequence that aligns with the AOP (A-CDM will be discussed in the next subchapter)

Digitalization of Airport Internal Management (1/4) Airport Operations Planning

AOP Management tool & International best-practices

The AOP Management tool should be the main system used to develop, update and monitor the Airport Operations Plan (AOP) through mechanisms that reduce delays, knock-on effects and adverse situations.

The AOP Management should include, at least, the following functionalities:

- Facilitate the development and sharing of the Airport Operating Plan during the whole operational framework
- Allow the real time monitoring of the operational performance comparing predicted and real values
- Enable the data sharing among stakeholders and consolidate all the relevant information under a single rolling plan

Spain: Palma Mallorca Airport AOP (AENA & Indra)

 The In-Airport paradigm introduces advanced methods for efficient aircraft process management, essential for airport business core and profitability. The Airport Operations Plan (AOP) ensures a unified operational plan among stakeholders, providing real-time situational awareness and facilitating early decision-making

UK: London Heathrow Airport AOP

 The Airport Operations Plan (AOP) at London Heathrow (LHR) enables airport stakeholders to share real-time information on arrivals, departures, and towed movements, improving efficiency and transparency. AOP provides accurate Target Take Off Times to Eurocontrol's Network Manager, enhancing European ATM Network planning and reducing slot delays

Digitalization of Airport Internal Management (2/4) Demand Capacity Balance

DCB Management tool & International best-practices

The DCB Management tool facilitates the balance of demand versus capacity using pre-arrival and predeparture sequences, as well as the available information of operational constraints to detect possible imbalance problems and propose solutions [usually in way of Target Times of Arrivals (TTA) and Target Times of Departure (TTD)]. The DCM Management tool should include the following functionalities:

- Enhance the demand-capacity balance of the airport, alerting when issues arise with demand and/or when insufficient capacity is reached
- Allow real time management of the demand and capacity balancing, and the detection/evaluation of possible issues resulting from adverse events
- Enable the assessment of the impact of adverse events in the AOP and the evaluation of what-if scenarios depending on the resolution

UK: NATS Demand Capacity Balancing (DCB)

• The National Air Traffic Services (NATS) in the UK uses the Demand Capacity Balancing (DCB) system to optimize air traffic flow and efficiently manage airport capacity. Integrating real-time data from weather, flight schedules and air traffic control, their DCB tool predicts demand and manages capacity to reduce delays and maintain smooth operations

USA: FAA Traffic Flow Management System (TFMS)

 The FAA's Traffic Flow Management System (TFMS) balances air traffic demand with airport and airspace capacity in the United States. By aggregating data from radar, flight plans, and weather reports, TFMS provides a comprehensive view of air traffic, enabling strategic and tactical management to mitigate congestion and optimize flow

Australia: Airservices Australia Demand Capacity Manager (DCM)

 Airservices Australia uses the Demand Capacity Manager (DCM) tool to manage air traffic flow and balance demand with airport capacity. DCM helps predict traffic patterns, optimize resource allocation, and implement measures like ground delays and rerouting to enhance efficiency and reduce delays at major airports

Digitalization of Airport Internal Management (3/4) Performance Monitoring Platform

PMP Management tool & International best-practices

Performance Monitoring must be supported by a platform that gathers, processes and manages all the available information to provide a quantitative vision of the operation in the form of dashboards for the real-time (especially conceived to be used in the NextGen ASOC) and the pre-tactical stages to inform about the operational expected throughput. The PMP tool should:

- Facilitate the evaluation and monitoring of the airport performance during the whole operational framework
- Allow the AOP management by alerting of possible imbalances in the short/mid term triggered by KPIs outside thresholds
- Enable the evaluation of the operation to improve the AOP for the next day and significative changes in the operation

Belgium: Nallian for Air Cargo at Liege

Many of these Performance Monitoring Platform tools are custom-developed inhouse by the airports to precisely meet their specific needs and requirements

Liege Airport, a major cargo hub in Europe, has enhanced its efficiency, transparency and reliability using the Nallian for Air Cargo suite. This data-sharing platform, coupled with collaborative applications, allows the airport and its stakeholders to operate seamlessly. With over 700,000 tons of cargo annually, Liege Airport aims to lead Europe by leveraging a cloud-based platform for secure and integrated operations

UK: Heathrow Airport's Airport Operations Centre

• Heathrow Airport's APOC employs a sophisticated performance monitoring platform to oversee airport operations. It features real-time dashboards and pre-tactical planning tools that track performance metrics. The platform enhances operational efficiency by providing comprehensive data analysis. It supports proactive decision-making and helps manage capacity and resources effectively, ensuring optimal airport performance

Digitalization of Airport Internal Management (4/4) Incidents and Emergencies

IEM Management tool & International best-practices

The IEM is a new way of operating based on airport systems predictability for aircraft, passenger and baggage flows, and which also requires the proactive management of adverse events.

Currently, the TCIAA manages any of those events manually, which involves multiple trivial tasks that often interfere with crucial stakeholder activities.

For that reason, it is highly **recommended to implement an Incidents and Emergency Management tool**, which provides a single solution to reduce the complexity of managing adverse events. The IEM tool should:

- Centralize the management of adverse events
- Allow collaborative on-time resolution
- Automate the adverse events response and monitoring

San Francisco Airport: Veoci

- **Veoci** is a performance monitoring platform that has been adopted by several major international airports, including San Francisco International Airport and Incheon International Airport. The platform provides a centralized solution for managing incidents, emergencies, and business continuity
- Key features of Veoci include incident reporting, resource management, communication tools, and advanced data analytics. This comprehensive platform allows airports to streamline their response to adverse events, improve collaboration, and gain valuable insights to optimize their operations

Sydney Airport: Noggin

- **Noggin** is another incident and emergency management platform utilized by airports around the world, such as Sydney Airport and Auckland Airport. Noggin offers a comprehensive suite of modules for planning, response, and recovery during disruptive events
- Its capabilities include incident logging, resource tracking, communication management, and robust post-incident analysis. This holistic approach enables airports to effectively prepare for, mitigate, and learn from various types of incidents that can impact their operations

Content

Objectives & actions of the Technological Development Plan

ALG

Actions in the Technological Development Plan

Technology needs assessment and Systems building

Digitalization of passenger experience

Digitalization of airport internal management

Implementation of collaborative tools for airport operations (A-CDM)

TCIAA Technological Development Action Plan Digitalization of Key Performance Indicators

A-CDM is an initiative developed to improve efficiency and punctuality of airport operations through collaboration between all stakeholders

A-CDM description and value proposition

Description

- ICAO describes A-CDM as a methodology that fosters cooperation and information exchange between key airport stakeholders to improve decision-making and optimise airport operations. This includes improving capacity planning and management, as well as reducing delays and increasing operational predictability
- The A-CDM concept emerged in Europe in response to the need to improve operational efficiency at congested airports. The initial development of A-CDM was carried out under the SESAR (Single European Sky ATM Research) initiative, which is a European project aimed at modernising air traffic management in Europe

Value Proposition

 The purpose of A-CDM is to improve the timeliness and efficiency of airport operations through collaboration and the sharing of accurate and timely information. By sharing real-time data, stakeholders can make more informed decisions, leading to better utilisation of available resources, reduced delays and a smoother passenger experience

Current European examples

A-CDM involves integration of information systems and adoption of standardised procedures for data exchange, in addition to close collaboration between all actors involved, staff training and adaptation of technological systems

The A-CDM model proposes a work culture based on transparency and exchange of operational data and information from every player

Collaborative communication with stakeholders

														111/01
													_	-ustra
I NES	re de ama-ampo	etic scentrile	arcenton	P-#101	* 🥃 +COM									
Converts +	Seleccioner				-		_							PRUEBACOM INT
6						UTC		6				-		MAD
-				-		16 18:4	5		-		-		er	DM
and the second	ropoersos				-						-		ec	
	Vuelos				3	Usual	io		10	ntormes			Sali	
												Unitiers	a actualización	2014.01.27 16:18:24
Istado	de sali	das												100 100
International Action	-	-												
introdate	HUGHTID -	HEGT	DES-	GATE	STAND	BOBI -	EOG1-	TOBIT-	8.1081-	40.40	EXUT-	ADEI	101(1/6)*	CIDI- SIAIUS
10E3100	IDC 3100	EC-JCM	BCN.	110	352	20140127 10:05	10:00	16:10		10.10	12	10:07	10.10 T	ORK
· ANERTTO	246.9770	Esterie	71%	5429	10.00	20140127 16 10	16.20	16.16		18.19		10.00	18 29 T	RUX
AEABOTO	AEAB020		PM	E80	T32	20140127 16:10	16.10	16:10	0	16.10	17.	16:10	16:25 T	OEK
BEL 3728	BEL5720	00.555	BRU	064	122	20140127 16:20	16:20	16:10	U.	16-10	14	16:13	18:20 T	OEK
	IBE 3410	EC-LEI	ORY	M46	556	20140127 16:20	16:20	16:20	0	16:20	17		16:30 T	RDY
	AEA1025		ORY	063		20140127 16:20	16.20	16.20	0	16:20	54		10.31 T	RDY
	RYR5097		STN	824		20140127 16:30	16:20	16:20	0	16.20	21		16.41 T	CLS F
	ANE 8754	EC-LIX	NCE	Kas	402	20140127 16:30	16:30	16:30	0	16.30	16		16:46 T	LSC
	AEA5441		BJZ	D-59		20140127 16:35	16:35	16.25	M	18/25	11		16:38 T	CLS
	1053000	EC-LLE	ALC	.158	342	20140127 10:45	16.45	16:45	0	18:45	18		17:00 T	BRD
	HELP/JUNIN	LEIKA	FCO	Eas	130	20140127 16:45	16:45				17		17:36 T	INI
AZADE3	AZA063	manager.		K74	336	20140127 16:50	16:60	17:30	P		12		17:02 1	INI
 AZA063 (B\$3062 	AZA063 1853062	EC-LKH	SVQ			20140127 18:55	16:55	16:55	P		76		16111	INI
 AZA063 IBS3962 RYR324U 	AZA063 IB53062 RYR7157	EC-LKH	DUB	831	10,510	EGTIONET TOTOL		16.55	P		18		17:13 T	INI
 AZA083 IBS3062 RYR324U 	AZA063 1853062 RYR7167 1853328	EC-KOY	DUB DKR	831 526	562	20140127 10:55	16.55	a distant					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
 AZA063 IB\$3062 RYR324U DUHR1U 	AZA063 1853062 RYR7167 185308 0LH1805	EC-LKH EC-KOY D-AILY	DUB DKR MUC	831 526 060	562 T20	20140127 10:55 20140127 16:55	16.55	100823			19		17.14.1	180
 AZA063 IB\$3062 RYR324U DUH313 	AZA063 IBE3062 RYIC/167 IBE3328 OLH1805 THY1860	EC-KOY D-AILY TC-JHO	DUB DKR MUC IST	831 526 060 828	562 128 15	20140127 10:55 20140127 16:55 20140127 16:55	10.55 18.55 18.65	17.08	P		19 20		17:28 T	INI
 AZA063 1853062 RYR324U DLH913 	AZA063 IBE3062 RYI2/162 IBE3328 OLH1805 TH91860 AME0712	EC-LKH EC-KOY D.AILY TC-3HO EC-LJR	SVQ DUB DKR MUC IST LYS	831 526 060 828 877	962 T20 T8 411	20140127 10.55 20140127 16.55 20140127 16:55 20140127 16:55 20140127 17:00	10.55 18.55 18.65 17.00	17:08 17:00	P P		19 26 16		17:28 T 17:10 T	INI INI INI
 AZA063 1853062 RYR324U DUH313 VL01028 	AZA063 1853062 RVI(7157 18E3328 OLH1805 TH91860 AME8712 VL01020	EC-LKH EC-KOY D.AILY TC-3HO EC-LJR EC-KLT	SVQ DUB DKR MUC IST LYS BCN	831 526 060 828 877 H25	562 120 15 411 364	20140127 10:55 20140127 10:55 20140127 10:55 20140127 10:55 20140127 10:05 20140127 17:00 20140127 17:00	16.55 16.55 16.65 17.00 17.00	17:08 17:00	P P		19 20 16 17		17:28 T 17:26 T 17:10 T 17:17 T	INI INI INI
AZA063 1853062 RYR324U DLH31J VL03028	AZA063 IB53962 RYI(7157 IBE3328 OLH1805 TH91860 AME8712 VL01020 EZV7010	EC-LKH EC-KOY D-AILY TC-3HO EC-LJR EC-KLT	SVQ DUB DKR MUC IST LYS BCN LIS	831 526 040 828 877 H25 C35	502 T20 T5 411 304 T9	20140127 16:55 20140137 16:55 20140127 16:55 20140127 16:56 20140127 17:00 20140127 17:00 20140127 17:05	16.55 16.55 18.55 17.00 17.00 17.05	17:08 17:00 17:05	P P P		19 20 16 17 16		17 14 1 17:28 T 17:10 T 17:17 T 17:21 T	INI INI INI INI INI
AZADE3 IBS3962 RYR324U DLH31J VLO3028 RYR840X	AZA063 IB53062 RYIR/157 IB5308 DLH1805 THY1869 ANE8712 VL01026 EZY7010 RYR5664	EC-LKH EC-KOY D.AILY TC-2HO EC-LJR EC-KLT	SVQ DUB DKR MUC IST LYS BCN LIS CRL	831 526 040 828 K77 H25 C35 C41	562 1720 18 411 364 19	20140127 18:55 20140127 18:55 20140127 18:65 20140127 18:65 20140127 17:00 20140127 17:00 20140127 17:05	16.55 16.55 16.55 17.00 17.00 17.05 17.05	17:08 17:00 17:05 17:05	P P P P		19 20 16 17 16 16		17 14 1 17:28 T 17:10 T 17:17 T 17:21 T 17:21 T	181 181 181 181 181 181
AZADB3 IBS3062 RYR324U DLH31J VL03028 RYR840X	AZA663 IB53662 RYI0/167 IB5328 DLH1805 THY1800 AM68712 VLD1026 EZY7010 RYR5664 AEA7227	EC-KOY D-ALY TO-3HO EC-LIR EC-KLT	SVQ DUB DKR MUC IST LYS BCN LIS CRL LCG QUD	831 526 540 828 877 H25 C35 C41 059	902 T20 T6 411 304 T9	20140127 18:55 20140127 18:55 20140127 18:68 20140127 18:68 20140127 17:00 20140127 17:00 20140127 17:05 20140127 17:10	16.55 16.55 16.55 17:00 17:00 17:05 17:05 17:05 17:10	17.08 17:00 17:05 17:05	P P P		19 20 16 17 16 16 16		17.16 T 17.28 T 17.10 T 17.17 T 17.21 T 17.21 T 17.25 T	INI INI INI INI INI INI INI INI

- Different data and information is published and shared by all the players involved in the airport and air operations
- Having a **unique and centralized data base limits** the **potential errors** that could arise from not having updated data
- Any change, delay, cancellation or other issues are posted in the A-CDM collaborative tool, so preparation and airport organization results more efficient

The A-CDM information exchange supports decision making for each of the key stakeholders and facilitates the model implementation

Needs for a successful implementation of A-CDM

Having an A-CDM platform

Deliver available information in real time

Standardising formats for information to be transmitted and stored

Alerting stakeholders to events or calculations by means of messages

Directly linking generic and local A-CDM processes that trigger events

Employ an interactive and independent Human-Machine Interface (HMI)

Without information exchange, the A-CDM methodology cannot be properly implemented, hindering the ability to obtain a comprehensive point of view of the airport's activities

The information homogenisation guarantees its correct interpretation and avoids misunderstandings among the parties involved

Collaborative philosophy and data shared via A-CDM

It is necessary to **homogenise the format of the data shared** among all players **to avoid inconsistencies and errors** in the information shared. This is why the **use of universal standards is required**:

- The standards used should focus on ensuring safety and reliability requirements to avoid creating oversaturation and unnecessary cost increases
- · The format to be used for the messages to be exchanged should be agreed between all players
- Besides, it is recommended that existing airport information systems (AODB, RMS and FMS) are used to take advantage of established interconnections and current information sharing

Operational data required by the A-CDM Platform

Planning data

- · Flights, airport resources for aircraft
- Aircraft messaging

Administration data

Data access permissions

User profiles

Functionalities

Post-execution data

Consolidated flight data (times, resources used, messaging)

Real-time data

- Flights of the day
- Airport resources for those flights
- Real-time messages from those flights

Common data

- Aeronautical data (airlines, aircraft type, airports, etc)
- Airport data (resources, handlers, etc)

This collaborative working philosophy involves a learning process in which one of the key objectives is to build trust by sharing operational information with players that could be competitors

The data processor is one of the main elements to ensure that realtime estimates are available for each flight

Data processor role and data processing phases

The data processor is in charge of taking the information coming from the different actors to calculate the target times according to the evolution of the flight:

- Prioritise the data according to each of the sources and as established in the A-CDM Operational Procedures Manual
- Analyse the stored information for statistical purposes and for the improvement of the stored standard values
- Communicate any potential issue to the applicable stakeholders

Stages of data processing Data preparation Data Data collection processing Data Data Analysis interpretation Data storage

In addition to a collaborative work philosophy among all parties, ensuring the data processor performs as expected would translate into good risk management by preventing potential issues thanks to agile communication

Interconnectivity enables the exchange of A-CDM information in an automated way between all players

Potential benefits of A-CDM

In order for A-CDM information to be shared in real time, it is necessary for all players involved in the operation to always have the A-CDM information Platform available. Interconnectivity of all systems is the most secure and efficient way to achieve this, either directly or using one of the existing channels

Benefit	s of players' integration into A-CDM	Accessibility		Security	Non-	Operational Efficiency	Passenger satisfaction
Ó	Optimisation of response times : compliance with procedures within tolerances	N/A	\checkmark	\checkmark	\checkmark	\checkmark	6
٩	Automation: eliminating human error	\checkmark	N/A		V	\checkmark	N/A
	Standardisation of information : same format and characteristics for all data collected				V		N/A
	Transparency of the operation: full knowledge for all stakeholders			V	V	V	N/A
	Instant access to information: available to ramp staff, airline CCOs and airport staff	\checkmark		V		V	
	Improved communication between actors: use of automated channels for easy and timely communication		N/A	V	V	V	N/A
\bigcirc	Information security : each company will manage who will see operational information and how they will see it	N/A	\checkmark	\checkmark		\checkmark	N/A

In airports where A-CDM platform has already been deployed, several savings arise in terms of time, environmental impact and cost

Main improvements from A-CDM

Improve	ements		Descriptions		International Examples
s	Fuel avings	>>	After the implementation of the A-CDM platform and the improvement of efficiency in airport and airline operations, the amount of fuel consumed decreases. Besides, there appears considerable fuel cost savings	>>	15 – 40 kg/ATM of fuel saved (2.5-3.5 MUSD)
s	CO ₂ avings	>>	Moreover, along with fuel savings, less CO_2 is emitted to the atmosphere, generating CO_2 savings for both airport operator and the aircraft operator, in line with the environmental objectives and recommendations of international organisms such as ICAO, IATA or ACI	>>	40 – 120 kg/ATM of CO ₂ not emitted
Ta re	axi-time eduction	»	Thanks to airport and aircraft movement optimization, the airport enjoys a taxi-time reduction , which, in addition to TOBT and TSAT higher accuracy , translates into better punctuality for both type of ATMs, departures and arrivals	》	2 – 4 mins reduction of mean taxi-time

Ultimately, these improvements lead to significant cost reductions from fuel savings, CO₂ reductions where ETS^[1] applies, decreased costs from congestion and delays, and less infrastructure due to enhanced operational efficiency

Source: Airport Collaborative Decision Making (Eurocontrol), ALG Analysis Note: Four airports of +25Mpax had been selected to indicate the different parameters (Brussels, Munich, Paris Charles De Gaulle, Frankfurt) [1]: Emissions Trading System, European Carbon-Credit price regime

Content

Objectives & actions of the Technological Development Plan Actions in the Technological Development Plan Technology needs assessment and Systems building Digitalization of passenger experience Digitalization of airport internal management Implementation of collaborative tools for airport operations (A-CDM)

ALG

TCIAA Technological Development Action Plan

Digitalization Key Performance Indicators

The technology development plan considers strategic actions, objectives, and action blocks to be developed over the coming years

Rationale of the action plan

TCIAA

GDT/XSC

PLS

SLX/NCA

Action Plan Roadmap:

Technology Needs Assessment and Systems Building

Roadmap for Technology Needs Assessment and Systems Building

	Short-term	Mid-term	Long-term
ଙ୍କୁଛ Technology Needs	Assessment		
Analysis of Current Technology			
Identification of Future Needs			
Gap Analysis			
Implementation planning – Systems building			

- Technology Needs Assessment and Systems Building is implemented across the entire organization to identify new technologies to implement within the following actions: Digitalization of Passenger Experience, Airport Internal Management and Implementation of Collaborative
- It requires a **structured and methodical approach which includes** analysis of the current technology, identification of the future requirements, a comprehensive gap analysis, and finally its implementation
- It should be conducted in the short-term to anticipate global and regional market trends and determine the operational and financial scope of the TMP

The Technology Needs Assessment and Systems Building will ensure the TCIAA stays ahead of market trends by strategically implementing new technologies that enhance operations efficiency and improve overall performance

PLS

TCIAA

GDT/XSC SLX/NCA

Action Plan Roadmap:

Digitalization of Passenger Experience (1/2)

Roadmap for the Digitalization of Passenger Experience

Mid-term Short-term Long-term Self-Bag drop system Planning and Assessment Tendering and Procurement Systems dev. and Integration Implementation and Monitoring **Digital Travel Credential** Planning and Assessment Tendering and Procurement Systems dev. and Integration Implementation and Monitoring Autonomous shopping Planning and Assessment Tendering and Procurement Systems dev. and Integration Implementation and Monitoring

- · The digital travel credential would be developed by the TCIAA in collaboration with the Government, primarily for security reasons
- After the implementation of most of these tools in Providenciales (to be mainly developed by the private operator once the new terminal building is developed), Grand Turk (GDT) and South Caicos (XSC) should be prioritized in the mid-term, considering the anticipated significant increase in international passenger volume. No further developments are planned for the other domestic airports

Action Plan Roadmap:

Digitalization of Passenger Experience (2/2)

Roadmap for the Digitalization of Passenger Experience

TCIAA PLS GDT/XSC SLX/NCA

	Short-term	Mid-term	Long-term
🛱 Remote check-in			
Planning and Assessment			
Tendering and Procurement			
Systems dev. and Integration			
Implementation and Monitoring			
🕅 Airport App + Virtu	al queues ¹		
Planning and Assessment			
Tendering and Procurement			
Systems dev. and Integration			
Implementation and Monitoring			
🛓 E-luggage tags			
Planning and Assessment		-	
Tendering and Procurement			
Systems dev. and Integration			
Implementation and Monitoring			

- Remote check-in provides significant added value for high-yield tourists and was specifically requested by several hoteliers during ALG on-site visits, so it should be considered as one of the priorities for improving passenger's experience through the airport network
- TCIAA should lead the implementation of a global airport app and e-luggage system across the entire network, in collaboration with the private operator of PLS

Action Plan Roadmap:

Digitalization of Airport Internal Management

Roadmap for the Digitalization of Airport Internal Management

TCIAA PLS GDT/XSC SLX/NCA

	Short-term	Mid-term	Long-term
Airport Operation F	Planning tool		
Planning and Assessment			
Tendering and Procurement			
Systems dev. and Integration			
Implementation and Monitoring			
Demand Capacity E	Balance tool		
Planning and Assessment			
Tendering and Procurement			
Systems dev. and Integration			
Implementation and Monitoring			
E Performance Monit	oring Platform tool		
Planning and Assessment			
Tendering and Procurement			
Systems dev. and Integration			
Implementation and Monitoring			
Incidents & Emerge	encies tool		
Planning and Assessment			
Tendering and Procurement			
Systems dev. and Integration			
Implementation and Monitoring			

These tools primarily apply to PLS, with long-term plans for GDT and XSC, even though these will be partial developments due to the expected traffic volumes; no further actions are planned for other locations

Action Plan Roadmap: Implementation of for A-CDM tool

Roadmap for A-CDM tool

	Short-term	Mid-term	Long-term
ာ့် A-CDM			
Planning and Assessment			
Tendering and Procurement			
Systems dev. and Integration			
Implementation and Monitoring			

- A-CDM involves the integration of various systems, making it a complex process
- It requires a **structured approach** including thorough analysis, tendering, comprehensive training, implementation and continuous monitoring; and should be led by PLS private operator in collaboration with the rest of the stakeholders involved, including the TCIAA
- The implementation of A-CDM will follow the Airport Operations Plan (AOP), ensuring both components integrate the most advanced concepts and guidelines
- In the long-term, A-CDM may be applied to Grand Turk (GDT) and South Caicos (XSC), although with a lesser degree of development compared to the main airport. No additional developments are expected beyond this

Although the process is complex, it will significantly enhance operational efficiency at PLS, especially during peak hours; in the long-term, efforts will be made to replicate this on a smaller scale at GDT and XSC

Content

Objectives & actions of the Technological Development Plan Actions in the Technological Development Plan Technology needs assessment and Systems building Digitalization of passenger experience Digitalization of airport internal management Implementation of collaborative tools for airport operations (A-CDM) TCIAA Technological Development Action Plan Digitalization of Key Performance Indicators

ALG

KPIs within these 5 Key Performance Areas can be used to assess the progress and success of the Technological Development Plan's objectives

Key Performance Areas (KPAs) for the Technology Development Plan

As technology continues to evolve, it is important to monitor these KPAs and consider whether it is necessary to track additional areas or KPIs, aiming to measure the overall success and goal achievement of the technology development

KPIs must be "SMART" (specific, measurable, achievable, relevant and timely) to review systems and service performance

Key Performance Indicators (KPIs) for the Technology Development Plan

	KPI	Measure	Unit		KPI	Measure	Unit
⑦ ゴ IT Quality	# of total incidents	Number of total issues reported by passengers, airport employees or users	#		# of security incidents	This metric quantifies the count of security breaches, vulnerabilities or incidents related to cybersecurity risks	#
	# of open incidents	Number of issues not yet resolved reported by passengers, airport employees or users	#		Security-rel. downtime	Security downtime measures the total time an app or system is unavailable due to security issues	h
	MTRI	Meantime To Resolve an Incident (MTRI) is the average time it takes for the support team to resolve reported issues	h		Overall	General satisfaction of passengers/users with the apps, systems and services provided. It is rated on	1-5
	# of critical incidents	It counts the times a system or app is no longer performing as it should and needs to be fixed as	#		satisfaction	a predefined scale (1 to 5)	
	MTTR	Mean Time To Repair (MTTR) measures the time it takes for a technician to resolve their repair	h	Passenger/	Ease of use	apps, systems and services are for passengers or users. It is rated on a predefined scale (1 to 5)	1-5
	ATBF	requests		User	Availability	Measures the promptness and presence of staff	1-5
		measures the average time between system failures and in which it is not operational	h	Satisfaction	Helpfulness	Assesses the effectiveness and friendliness of staff	1-5
	Server downtime	Server downtime measures the total time an app or system is unavailable due to IT issues, from routine maintenance to unforeseen events	h		Deployment	Total expenses incurred in the process of implementing and integrating new technology or	\$
	# of	Total passengers, users or employees that have	#		COSI	systems	
	pax/users	of operations of the technology in question	π		IT cost/pax	Total costs allocated per passenger, related to IT infrastructure, software, support, and services	\$
	# of new pax/users	Total new passengers, users or employees that have used an app, system or service since a stablished reference period (last month/year/)	#	(>) Profitability	Maintenance cost/pax	Total maintenance expenses allocated per passenger, including maintaining and repairing facilities, equipment, and technology systems	\$
Traffic	# of pax/user per system	Total passengers, users or employees that have used an app, system or service per unit of the technology in question	#		IT ROI	IT Return on Investment (ROI) assesses the value and effectiveness of the investments in technology	%
	Churn rate	n rate Percentage of passengers/users who stop using a service or app			IT Budget variance	IT budget variance measures the difference between actual IT expenses and the budgeted amounts	%

Note: Not all the above KPIs apply to every proposed tool. For each action block, system, service, app it must be assessed which ones are suitable for measuring its performance 43

Pere Mas pmas@alg-global.com

BARCELONA Roc Boronat, 133, 10th Floor 08018 Barcelona, Spain T +34 934 632 300 Ana Gómez agomez@alg-global.com

alg-global.com